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Executive Summary 
This deliverable, part of the ReHydro project funded by the European Union’s Horizon Europe 
program, presents a comprehensive framework for assessing the environmental pressures 
exerted by hydropower projects, particularly in the context of refurbishment and modernization. 
The overarching goal is to support sustainable hydropower development that aligns with 
ecological and societal needs under climate change constraints. 

Hydropower impacts on aquatic ecosystems are multifaceted and context-dependent, involving 
both local and global pressures. Traditionally, assessments have focused on local impacts during 
construction or operational phases, often neglecting the broader environmental footprint across 
the entire value chain. This report addresses that gap by proposing a dual-perspective approach—
local and global—supported by a set of indicators to quantify pressures on biodiversity. 

Key contributions of this deliverable include: 

• Categorization of Pressures: The framework distinguishes between local pressures 
(e.g., river fragmentation, flow alteration, habitat degradation, water quality changes) 
and global pressures (e.g., greenhouse gas emissions, land use, water consumption, 
pollution from material extraction and transformation). 

• Indicator Development: A detailed list of potential indicators is proposed to assess 
both local and global pressures. These indicators are designed to be applicable in early 
project stages using publicly available or easily obtainable data, facilitating eco-design 
and variant comparison. 

• Demonstration Sites: Indicators will be tested on selected hydropower refurbishment 
sites (e.g., VSM, Rhône, Lima) to evaluate their feasibility, relevance, and ability to guide 
decision-making. The VSM site, involving significant construction work, will serve as a 
key testbed for validating the framework. 

• Future Perspectives: The next steps involve refining and validating the indicators, 
ensuring their interoperability with existing sustainability frameworks (e.g., CSRD), and 
ultimately developing a biodiversity footprint index to support eco-design in future 
hydropower new or refurbishment projects. 
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Glossary 

Term Definition 

Anthropic pressure Environmental pressure resulting from human activities, such as 
construction, pollution, or land use change. 

Barrier effect The impact of physical structures (e.g., dams, weirs) that hinder 
the movement of aquatic species and disrupt river connectivity. 

Eco-design A design approach that integrates environmental considerations 
throughout the life cycle of a project or product. 

Ex ante assessment An evaluation conducted before project implementation, based 
on estimates and available data. 

Fragmentation The division of rivers into disconnected segments, affecting 
ecological continuity and species migration. 

Habitat suitability The degree to which a specific environment meets the needs of 
living conditions for a particular species or community. 

Hydropeaking Rapid and frequent changes in river flow and water level caused 
by hydropower operations, often affecting aquatic habitats. 

Indicator matrix A structured tool that organizes indicators by pressure type to 
assess environmental impacts. 

Lentic habitat Still water environments with low water velocity such as pools, 
lakes or reservoirs, as opposed to flowing (lotic) systems. 

Mitigation measures Actions taken to reduce, improve or offset negative 
environmental impacts of a project. 

Riparian zone The interface between land and a river or stream, often rich in 
biodiversity and crucial for ecosystem health. 

Sediment continuity The natural transport of sediments along a river, which can be 
disrupted by dams, weirs and reservoirs. 

Stranding A phenomenon where aquatic organisms become trapped on 
dry land or in isolated pools due to sudden drops in water levels. 

Thermal stratification Layering of water in reservoirs based on temperature, which can 
affect oxygen levels and aquatic life. 

Trophic state A classification of the biological productivity of water bodies, 
indicating the total biomass present at a given time. 

Upstream/downstream 
migration 

The movement of aquatic species along a river, often obstructed 
by hydropower infrastructure. 

Watershed A land area where all precipitation drains to a common outlet, 
also called catchment. 
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1 Background 
The main objective of ReHydro is to demonstrate how European hydropower systems can be 
refurbished and modernized to be fit for a leading role in the future power system respecting 
sustainability requirements and societal needs in a climate change context. 

The pressures and impacts of hydroelectric power production on aquatic environments and 
freshwater biodiversity are highly context dependent. Their processes are generally well 
understood and assessed locally (He et al, 2025). Nevertheless, the entire value chain of a 
hydropower project (e.g. the use of machinery, extracted materials, energy sources used for 
construction) must be considered for a comprehensive assessment of pressures on ecosystems.  

The assessment of the impacts of hydropower development is most often carried out either during 
construction or during the operational phase for modification works or concession renewals. It is 
based on local environmental characteristics and on ex ante risk analyses (supported by local 
environmental data and the operating characteristics of the development and feedback from 
experience). It leads to recommendations for measures to avoid or reduce local impacts on 
biodiversity, without considering the entire value chain and without quantifying their "global” 
(elsewhere on the planet) or on other components (increased carbon emissions) to ensure that 
these measures are truly ’no regrets’ and that there will be no “transfer" of impact (by increasing 
another type of pressure, for example). It is therefore in the best interests of project developers to 
have a ‘tool’ that allows them to estimate how these pressures on biodiversity will evolve 
depending on the technical variants or impact reduction measures they are considering, 
considering the entire life cycle. 

The ultimate objective of task 5.6 of the ReHydro project is to develop a tool for assessing the 
reduction in environmental impact achieved by renovating the structure, considering all impacts 
during the construction, operation and deconstruction phases. Depending on their nature, these 
modernizations may require works of varying scale, which will themselves have local but also 
global environmental impacts throughout the value chain. This is why we considered it necessary 
to develop tools that consider the ‘burden’ associated with these works against the benefits for 
biodiversity in the broadest sense. 

To meet this objective, tools to design the “best” alternative (including the option of no project) 
considering local catchment impacts and scheme characteristics, other anthropic pressures, 
water uses, etc, and global impact based on life cycle impact assessment (LCIA), are needed. 

To guide decisions, these tools must be used right from the start of the project development, with 
a systemic and global approach as much as possible. This can be rather challenging at this stage 
as technical or environmental data are not always available or are not accurate enough. 

Moreover, LCIA approaches are not sufficiently developed to integrate aquatic biodiversity, 
especially those influenced by the presence or the operation of hydropower plants. 

The objective of the present deliverable is 1) to identify and describe the pressures on aquatic 
biodiversity in “local” and “global” perspectives and 2) to identify potential indicators to quantify 
or assess these pressures. To this end, a bibliographic analysis of scientific literature was carried 
out. The next step will be to select indicators from this list of potential indicators, which will be 
tested at demonstration sites where major work is planned. This test will allow for an evaluation 
of their usefulness for analysing project variants within an LCA-compatible framework, as well as 
help guide changes to the indicators or thresholds or both. 
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2 Objectives 
Literature on hydropower impacts is abundant (Quandt et al., 2022; He et al., 2025). This has 
improved the environmental impact assessment of hydropower project studies, but these 
assessments remain limited to local environmental and social impacts (on the rivers and riparian 
zones, water uses, …) that are directly concerned by the hydropower project, without considering 
impacts of the entire value chain.  

On the other hand, hydropower LCA studies assess the hydropower pressure on the global 
environment, through quantification of energy and matter fluxes used to build and operate the 
scheme, but with limited consideration of biodiversity impacts. Hence, literature about 
quantification of anthropic pressures on aquatic biodiversity is rare or recent and incomplete, 
while the one related to terrestrial biodiversity is more developed. 

Therefore, our objective is to provide a tool targeting local effects of HPP projects on biodiversity 
to complement the LCA, using a simplified quantitative or semi-quantitative approach. 

The tool is intended to be complete regarding the hydropower pressures on environment. As it is 
designed to be used in the early stages of a refurbishment project as well as a new scheme, to 
help eco-design by comparing variants, it must be based on public or easily accessible 
environmental data. 
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3 Literature review 

3.1 Local anthropic pressures on aquatic environment 

3.1.1 General framework 
In Europe, the European Water Framework Directive (2000) categorized the pressures exerted on 
aquatic environments that are likely to prevent them from achieving good ecological status.  

The principles underlying this Directive are based on Pressure-State-Response (PSR) model 
initially developed in Canada in the 80s, which has been extended to the DPSIR (Driving forces, 
Pressures, State, Impact, Responses) model (EEA, 1999) (Stanners et al, 2009). 

The pressure identified on watercourses are mainly pollutant discharges from human activities 
(macropollutants, nutrients, mineral or organic micropollutants), alterations to morphology 
(dams, weirs embankments, etc.) and alterations to hydrology (withdrawal, diversion, basin 
transfer, hydropeaking, etc.) 

The metrics used mainly concern water quality, water quantity, biota and morphology. 

 Pollution is assessed by searching for pollutants and comparing them to quality 
thresholds, using fairly standard approaches that are identical across different countries 
(EC, 2003).  

 River hydro-morphological elements that are assessed refer to quantity and dynamics of 
water flow, connection to groundwater bodies, river continuity, river depth and width 
variations, structure and substrate of the riverbed and structure of the riparian zone (EC, 
2003). In most European states, these hydro-morphological analyses required 
methodological development approaches that remained specific to each state (e.g. RCI, 
river connectivity index in Catalonia, Sola et al, 2014; or MQI, morphological quality index 
in Italy, Rinaldi et al, 2013, etc.)  

 For biological communities, the various tools initially available to each country to 
characterize a particular aquatic biological community have been adapted to reflect 
‘deviations from the reference’ specific to each type of watercourse. This concept of 
deviation from the reference for each type of watercourse makes it possible to compare 
the status of watercourses regardless of their type or the method used.  

One of the limitations of the PSR model is its restricted spatial or thematic scope (Delavaud et al, 
2021). 

3.1.2 Hydropower pressures on rivers 
Hydropower facilities constantly interact with upstream and downstream aquatic environments, 
as well as with adjacent riparian or terrestrial ones and local human societies. These effects vary 
in intensity, length, and surface area, and affect different compartments depending on the 
scheme, or the river or the territory characteristics. They therefore require a systemic and holistic 
view of their wide range of effects on all environmental and human components (Voegeli et al, 
2019). 

The nature of the local pressures of hydroelectricity production (or hydropower) on river 
functionality and aquatic biodiversity has been summarised in several bibliographic reviews (see, 
for example, Fengzy He et al, 2025). They are assessed using various indicators in the 
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administrative approval processes for hydroelectric projects or in the certification processes for 
sustainable projects, such as those of the IHA (International Hydropower Association) or the LIHI 
(Low Impact Hydropower Institute).  

Pracheil et al. (2019) compiled a checklist of indicators of river functioning influenced by 
hydropower, based on a review of the indicators used, which were consolidated into a database 
(EMH Database). The 51 indicators of river functionality were grouped into six categories: biota, 
water quality, geomorphology, continuity, water quantity and land use in the catchment area 
(Pracheil et al, 2019). 

Going further, Voegeli et al. (2019) proposed, based on literature, cause-and-effect diagrams 
identifying the interactions and impacts of hydropower on different components of the 
environment, beyond the aquatic compartment. An example is given in Figure 1 relative to cause-
to-effects relationships explaining the impacts on biodiversity and ecosystems. These diagrams 
consider the nature of the facility (large dam and reservoir, power plant, power lines) and 
environmental components (landscape, biodiversity, water quality, climate, natural hazards, 
socioeconomics, human health, societal acceptability, system services, and other services 
rendered). They thus reflect the complexity of these interactions and the difficulty of assessing 
the sustainability of hydroelectric projects as comprehensively as possible. 
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Figure 1. Example of cause-to-effects of hydropower pressures on ecosystems and biodiversity. From Voegeli et al, 2019 (Fig.7). 
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3.2 Global anthropic pressures on aquatic environment 

3.2.1 General framework  

3.2.1.1 Global pressures on biodiversity 
IPBES grouped all anthropogenic impacts on global biodiversity into five categories of pressure, 
which are mainly related to changes in land (or sea) use, climate change, pollution, 
overexploitation of species and the introduction of invasive alien species (IPBES, 2019). Within 
this framework, we can identify different types of pressure on aquatic biodiversity: 

• Land use: habitat or ecosystem destruction, fragmentation or perturbation (light, noise) 
• Global change: thermal modifications, greenhouse gases (GHG), acidification, water 

regime modifications 
• Pollutions: pollutants emissions 
• Overexploitation: harvesting species beyond their stock renew 
• Invasive alien species: may be introduced voluntary or not 

In freshwater ecosystems at a global scale, IPBES estimates that the three main factors affecting 
the biodiversity are land use, pollution and direct exploitation, followed by climate change and 
invasive species. 

3.2.1.2 LCIA framework 
Within a global perspective, the main tool for assessing negative impacts on biodiversity in a 
comprehensive manner is based on the concept of Life Cycle Assessment (LCA) which has been 
standardized (ISO 14040, published in 1997, updated in 2006).  In LCIA (life cycle impact 
assessment), the inventory is analysed for environmental impact. 

Its principle is to link ‘flows’ (emissions, consumption, activities) to different categories of 
pressures (‘midpoints’), and these pressures to final environmental impacts (“endpoints”), via 
‘characterisation factors’ from global databases, which are gradually enriched and updated as 
knowledge and models progresses. In LCA, characterization factors are numerical values used to 
convert and aggregate the environmental impacts of different items into common impact 
categories. All these assessments are reduced to a common reference (e.g. kg of resource used 
or kg of emissions) and the results are expressed in a unit of equivalence.  

One of the strengths of LCA is its holistic approach, which is well suited to its objective of providing 
decision support for project developers and information for stakeholders. However, it is difficult 
to achieve the same level of accuracy for the different stages of the life cycle, and some impact 
models are still being developed for several categories of pressures (in particular water use, 
climate change, eutrophication or acidification, exotic species, resource exploitation) (Delavaux 
et al, 2021). The European Commission has therefore indicated the levels of reliability of the 
indicators used to assess the environmental performance of products over their life cycle (UC, 
Recommendation (UE) 2021/2279, 15/12/2021).  

3.2.1.3 Which type of biodiversity is concerned? 
A wide range of tools have been developed over the past 20 years, given their highly varied 
objectives of assessing the impacts of organisations as well as those of technological sectors, 
projects or products. As such, they do not share a common methodological framework (Fontanier 
et al, 2025) and result in a variety of reference units.  For activities or projects, the metrics used to 
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characterize impacts are generally closely linked to the methodological frameworks that 
developed them. The most used metrics are related to taxonomic richness or taxon abundance: 

- Potentially disappeared Fraction of Species (PDF, Goedkoop & Spriensma, 1999) which 
predicts the disappearance of species due to an environmental pressure in a certain area, 
over a certain time (ReCipe 1). 

- Mean species abundance (MSA), which can be used as a State Indicator Metric as well 
as a Footprint metric. It is based on the intactness of ecosystems through the assessment 
of the originally occurring species abundance in a specific area compared to their 
abundance in an undisturbed reference. 

Kuipers et al (2025) showed that these two metrics are not totally aligned: based on empirical 
data, PDF leaves about half of the variance in MSA loss unexplained. The two metrics reveal 
distinct aspects of community change: MSA reveals that abundance loss precedes species 
extinction, being more sensitive for biodiversity change than PDF, particularly at low PDF value. 

In another assessment of methodology, Damiani et al (2023) showed that none of the 64 methods 
they reviewed in a sufficient way consider the entire variety of pressures on biodiversity, 
ecosystems, taxonomic groups or essential biodiversity variables classes. Moreover, Avila-Ortega 
et al (2025, under review) observe that metrics focus on taxonomic and functional diversity, 
mainly at a species level, with very few extended to ecosystems assessment and none to genetic 
diversity. 

The wide variety of non-standardized methods for assessing impacts on aquatic biodiversity 
constitute an obstacle to impact assessment in LCA framework. Rubtsov (2024) suggests using 
estimates of biodiversity measures through eDNA analyses in LCA models, but no standard 
characterization factors (CFs) are yet available for aquatic biodiversity. 

3.2.1.4 What pressures are considered in freshwaters biodiversity LCIA? 
According to Damiani et al (2023), Land Use (LU) is the most assessed pressure in the LCIA 
methods, while water consumption, GHG or chemical pressures are less common; they found 
that only 11 methods apply to freshwater ecosystems, with only 5 out of them performing well 
(ReCipe 2016, LC Impact, Impact World+, GEP, PBF).  

As impacts on biodiversity in LCIA were assessed mainly through land use changes, freshwater 
biodiversity was until recently only partially concerned. Quandt et al (2022) identified and 
classified in 5 categories (physical, mechanical, chemical, biological, other), 18 anthropic 
disturbance factors affecting freshwaters biodiversity depending on occurrence, intensity, 
duration and frequency. They showed that 8 out of these 18 factors (44%) are at least partly 
addressed in LCIA methodologies, while the others are not covered at all yet (see table 1), and 
they called for research developments. 

  

 
1 LCIA : le modèle ReCiPe | Le RIVM 

https://www.rivm.nl/en/life-cycle-assessment-lca/recipe
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Table 1.  Freshwater biodiversity threats covered or not in LCIA, after Quandt et al, 2022. In bold, 
those that can be at least partially linked to HPP. 

Freshwater biodiversity threats 
At least partly covered in LCIA Not covered in LCIA 
Thermal pollution (partially) 
Ionizing radiations 
Eutrophication / nutrient inputs 
Organic material (partially) 
Acidification 
Toxic substances (included pathogenic) 
Water consumption 
Global warming 

Ozone depletion (only for human health) 
Water flow alteration (including lateral and 
longitudinal fragmentation) 
Degradation of riparian banks 
Freshwater salinization 
Suspended sediments (soil erosion) 
Microplastics 
Invasive species 
Overfishing 
Light and noise pollution 

 

According to Mir et al (2025) only three methods allow the assessment of water consumption 
(WC) on freshwater biodiversity by developing specific characterization factors (CFs); two of them 
are linked to fish population reduction (Hanafiah et al, 2011; Pierrat et al, 2023a), the last one 
being linked to hydropower and loss of aquatic biodiversity (Humbert & Maendly, 2008). The most 
recent water footprint impact assessment involved the integration of water scarcity and pollution, 
and it was shown that pollution impact on biodiversity was more important than scarcity impact, 
especially for sensitive species and ecosystem (Pierrat et al, 2023b). 

Water consumption impacts aquatic habitat characteristics and availability for biota. A model 
has been developed to quantify habitat change potential (HCP) due to water abstraction on a LCIA 
basis on French rivers (Damiani et al, 2019). The model considers physical habitat suitability for 8 
fish species, 4 fish guilds and benthic macroinvertebrates; it has been applied on more than 
114000 river reaches (mean length 24,7 km) and calculated for Q50 (median flow) and Q90 (dry 
flow). In addition to the reach scale characterization factors were aggregated at different spatial 
scales; HCPs at reach scale are weighted by the relative river length against the total length of 
watershed river segments. Weighted habitat surface represents therefore the habitat frequency 
in the watershed. It is positively correlated to the probability of habitat alteration at watershed 
scale due to water consumption, if site specific information is not available. Despite model 
uncertainties, the authors underline the necessity to complement a LCIA with this kind of model 
to better assess the impact of water consumption on aquatic biodiversity. The model was 
extended to world2 rivers by Damiani et al (2021), using general hydraulics characteristics of rivers 
(watershed, slope, Strahler order, calculated depth and width, substrate diameter, Q50 and Q90). 

Li et al (2022) developed spatially differentiated characterization factors (CFs) for the impact of 
increasing water temperatures on freshwater fish species due to climate change. They are 
expressed as PDF due to lethal and sub-lethal effects on fish. However, these CFs cannot be 
applied to assess impact of cooling waters. 

Research is ongoing, to assess the impact of pressures on aquatic biodiversity linked to river 
fragmentation (see §3.4) but no literature is available yet for quantification of alien invasive 
species introductions in the LCIA framework for freshwaters biodiversity.  

 
2 In reality due to database information, it is limited to rivers under 60°N. 
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3.2.2 Framework for the assessment of HPP pressures on aquatic 
biodiversity 

As mentioned above, fragmentation is one of the most evident pressures of hydropower on 
aquatic ecosystem (as well as other anthropic activities that need dams such as irrigation).  At a 
global level, fragmentation has the second-largest impact score after water consumption (Figure 
2). It may be slightly different at regional scale, depending on the importance of water 
consumption, that can be different in southern and northern Europe, for instance. 

 

Figure 2. Impact scores in PDF.yr.kWh-1 expressing global species loss for 1 kWh of hydropower 
for the impact categories of land inundation, global warming, water consumption and 
fragmentation, (De Visser et al, 2025). 
 

De Visser et al (2025) recently filled a gap in LCIA approaches by developing the first 
characterization factors for freshwater fragmentation, quantifying the isolation effect for 
freshwater fish species. It is based on a macro-ecological relationship between the range size and 
the body size based on 4162 non-diadromous fish species (Keijzer et al 2024) extended to 7369, 
which is used to assess if an isolated reach is big enough to sustain the species development and 
define the Minimal Viable Range Size (MVRS). It is expressed with PDF metrics. It is established at 
a global scale for 58811 watersheds. All dams are supposed to be impassable (low efficiency of 
fish pass, reservoirs barriers for downstream migration, less than 2% of low height dam recorded 
in the Global Dam Tracker database (GDAT, 31870 dams) …). This limited framework due to biases 
of global dam databases should be improved by better integrate small dams (<10m) and 
efficiency of fish pass. Also, the authors underline that MVRS estimates may be overestimated in 
smaller basins and overestimated in bigger ones. 

Regarding the impact of reservoir occupation on macroinvertebrate richness, at different scales 
(reservoir, ecoregion and state), Trottier (2021) determined regional characterization factors and 
showed that they were pertinent at representing the impact at all scales. It was therefore possible 
to elaborate a model which was based on altitude, trophic state and surface of the reservoir, to 
assess the PDF when macroinvertebrate data are not available. 
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4 Framework for categorizing pressures 

4.1 Hydropower pressures  
The framework for hydropower pressures on aquatic biodiversity is synthetized in Table 2. 

4.2 Refurbishment or new projects? 
This framework for selecting indicators for an eco-design objective can be useful both for a new 
scheme and for refurbishment of an existing one.  

The pressures and indicators used for this assessment will depend on: 

 The level of accuracy or knowledge of local environmental data: this is likely to be well 
documented for an existing structure, but less accurate for a new project in the early 
stages of development, where only public data or preliminary field surveys may be 
available. 

 The type of refurbishment: in many cases, refurbishment will not require large-scale 
construction work, and it is highly likely that such an assessment will not be necessary or 
at least will not need to cover all categories of pressures. 

The indicator matrix will therefore be applied with the sole objective of identifying the eco-design 
levers for the project (new or refurbishment) and will be highly dependent on the site and type of 
project. 

ReHydro's T5.6 aims to test different indicators in the demonstration sites by comparing the 
situation after refurbishment with the initial scheme. The approach will be based on identifying 
relevant indicators and pressures for each type of project, thereby validating a posteriori the 
expected and modelled improvement in biodiversity linked to the refurbishment project.  

This validation will confirm the relevance of the indicators selected for assessing the impact of 
refurbishment on biodiversity. 
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Table 2.  Effects on biodiversity linked to different type of hydropower local and global pressures 
Pressure Type of Alteration Local/Global Direct Effects Indirect Effects 
Fragmentation of 
watercourses 

Longitudinal and 
lateral Local Inhibits access to essential habitats Alters solid transport continuity and 

modifies the riverbed 

Flow alteration 
→Habitat alteration 

Physical pressure 
combination Local 

- Frequent (intraday) and rapid 
variations of flow (hydropeaking)  
- Seasonal phase shift between 
hydrology and organisms' needs 

- Change in flood regime (e.g., lower 
frequency of channel-forming flows)  
- Flow reduction impacting wetted area, 
hydraulics, and habitat availability (e.g., 
spawning grounds) 

Riparian and 
terrestrial habitat 
alteration 

Dams and 
hydrological regime 
changes 

Local 

- Flooding of land areas by large dam 
reservoirs  
- Creation of lentic/lake areas instead 
of lotic zones 

- Reduced flooding frequency in riparian 
zones downstream dam 
- Lateral disconnection of banks  
- Reduced flooding of alluvial plains or 
hydraulic annexes 

Land use Land transformation Global Through material extractions (gravels 
for concrete, steel, copper…) 

Through transport of materials to the 
processing industrial plant or to the 
project site, etc. 

Climate change GHG emission Local / 
Global 

Reservoir emission during the entire 
operating phase as well as local 
works 

Material extraction and transformation 

Water consumption1 

Reservoir 
evaporation Local — - flow reduction in hot / dry periods 

Works Global Through materials extractions and 
transformation — 

Water quality2 
alteration Mainly thermal Local Cooling or warming of water — 

Or pollution Eutrophication, 
Toxicity Global Through materials extractions and 

transformation — 

Alien invasive 
species 

Works and watershed 
connections Local — Facilitation of species spread between 

previously isolated watersheds 
1: flow reduction in by-passed sections is not considered as a consumption, but as a hydrologic alteration. 
2: Other pressures (pollutants, eutrophication…) are not attributable to hydropower but to anthropic activities in the watershed. 
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5 Indicators to be tested on demonstrator sites 

5.1 Global indicators 
All the identified pertinent hydropower global pressures can be estimated via global indicators in 
quantitative analysis in LCIA.  

Table 3.  Global indicators in LCIA for hydropower pressure 

Category Pressure Indicator Characterization models 
Land Use m2 (occupied, converted) Globio & ReCIpe 

Climate Change tCO2eq (emission) LC-Impact 
Water consumption m3 (consumption) Aware 

Water Pollution Kg NO2eq. (emission) Impact World+ 

 

5.2 Local indicators 
They are many indicators to assess the relevant pressures identified in 4.1. They may require 
detailed, or complex data, and may concern different components of the biodiversity. 

As we want to compare project alternatives (or an initial state compared to a new scheme or to 
the refurbishment of an existing scheme), we have chosen to use the most general indicators, that 
can be fed with public data or data that relatively easily can be acquired through light field work. 
As much as possible, the chosen indicators are published in scientific literature or issued from 
WFD works or other European projects. The consequence is that the indicators and their 
combination will be widely applicable to European rivers and hydropower plants. 

The indicators are listed in Table 4 and 5, next pages. Their assessment and pressure classes level 
(high, medium, low), as well as their limitation due to available data, will be tested in the next 
steps of T5.6. 

They are described for each pressure they represent; Fragmentation, Hydrology and Habitat 
alterations, Riparian and terrestrial habitat alterations, Water consumption, Pollution, and 
Alien invasive species (IAS)  

Note that some indicators assess similar impacts (e.g. F1 and F2; R3 and R4) and some other 
indicators cover mixed pressure (e.g. F1, F7); their feasibility and interest will be tested to retain 
the most pertinent and realistic in a eco-design approach. 

The local indicators will be assessed in three impact levels (low, medium, high). They will be 
grouped by pressure categories, that can be related to IPBES categories, but no aggregation 
between categories will be done. 
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Table 4.  Proposed Local indicators to be tested on site demonstrators for Local Fragmentation and Flow or Aquatic habitat alterations 
Pressure Pressure description N° Indicator Reference 

Longitudinal 
fragmentation  

Artificial barriers (weirs, dams) may prevent 
aquatic species from completing their life cycle 
(upstream and / or downstream fish migration) 

L1 Nb of barriers in the river (/km or /river section) Van Treeck et al, 2022 (Tab 15-2) 
L2 Cumulative length of reservoir (/river section) Van Treeck et al, 2022 (Tab 15-2) 

L3 
Barrier effect (=1 – Lrest/Lref) 
Lrest=river length to the 1st anthropic new barrier; Lref= total 
river length to the 1st natural barrier. 

From Sandlund et al, 2013 in 
Harby et al 2018 

Incoming Solid transport of gravel or fine 
sediments is totally or partially reduced.  

L4 Water storage capacity: Long-term capacity ratio (LCTR) 3 IHA, 2019 

L5 
Dam transparency (to the total incoming sediment 
transport) (combine transiting over incoming volume or 
granulometry and frequency) 

Malavoi & Loire, 2019 

L6 Barrier effect (see F3) - 

Lateral 
fragmentation 

Lateral artificialization reduces the exchange of 
nutrients, sediments and biological materials 
between the riparian zones and the river or the 
floodplain and the river 

L7 River incision (m) Harby et al, 2018 

L8 % of artificial banks 
 (except for bedrocks rivers) Harby et al, 2023 

Global 
Fragmentation Isolation effect for freshwater fish species L9 Minimum Viable Range Size (only for dam >10m) De Visser et al, 2025 

Flow alteration 

Hydropeaking modifies magnitude, timing and 
frequency of flows, which impact organisms 
directly and through habitat alteration (short-
term alteration) 

F1 
Hydropeaking tool 
(combine sub-indicators, as magnitude, ramping rate, 
timing,…and vulnerability of the fish populations) 

FitHydro  

F2 
Habitat vulnerability x Flow Hazard Index 
(combine flow index from Courret, et al 2021 and Habitat 
vulnerability index for stranding or spawning dewatering or drift) 

Terrier et al, 2018 

Hydropeaking modifies the river’s flow regime 
which disrupt the river’s channel in the long-term F3 Nb of flow variations x amplitude variations, related to 

characteristics flow (mean annual flow, biennial flood…) Inspired by Courret et al, 2021 

Storage disrupts the natural flooding and low-
water cycles, which impact biological life cycle 

F4 10 years flood flow (amplitude of changes in flood return 
period) Harby et al, 2018, Table 25 

F5 Seasonal regime shift (deviation to the natural regime) Inspired by Ollero et al, 2011 and 
Harby et al, 2018 

Diversion of water modifies flow regime in the 
by-passed section which reduces wetted area 
(see also R2 and H1) 

F6 Value and Regime of flow compared to ecological flow or 
to natural minimal flow (%) Partly from Pierrat et al, 2023a 

 

 
3 LCTR : ratio between long-term reservoir volume (with or without sediment management) and initial reservoir volume (LCTR = 1 : no sediment accumulation) 

https://edfonline-my.sharepoint.com/personal/agnes_barillier_edf_fr/Documents/Pressure%09Pressure%20description%09N%C2%B0%09Indicator%09Reference
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Table 5.  Proposed indicators to be tested on site demonstrators for Local Habitat alteration (Riparian and Aquatic), Pollution and IAS pressures 
Pressure Pressure description N° Indicator Reference 

Degradation of 
Riparian zones 

Drying-out of by-passed sections results in 
watercourse width reduction, which impacts 
riparian functionality and favour terrestrial habitat  

R1 
Reduction of floodplain area or riparian width (%) (except for 
bedrocks rivers) (analysis from historical map/aerial photos or 
expertise through F4 indicator) 

Partly from Dehédin, 
2012 

R2 
Wetted surface reduction (m2, %) at low flow (e.g. percentile 
10) combined to annual flow (to be tested to complete L7 and L7 
indicators) 

Inspired by Quick et al, 
2017, and Moldoveanu 
et al, 2017 and 2023 

Flooding upstream dam impact terrestrial habitat 
and biodiversity.  

R3 Loss of terrestrial surface (%) - 

R4 Loss of terrestrial surfaces weighted with ecosystem types, 
through quantitative analysis (Land Use, LCIA) Dorber et al, 2020 

Degradation of 
aquatic Habitat 

Diversion of water modifies wetted area and 
hydraulics, that impact habitat availability and 
quality. 

H1 
Habitat change potential 
(this indicator combines hydraulics modification as well as substrate 
modification due to storage effect of dam) 

Damiani et al, 2021 

Flooding upstream dam replaces aquatic 
biodiversity* H2 Length of inundated running watercourse (% of the river 

section) 
Van Treeck et al 2022 
(Tab 15-2) 

Mixed Pressure on 
Fish 

The local pressure of hydropower on aquatic 
biodiversity is the results of the combination of 
physical processus and vulnerability of species 

H3 
EFHI indicator 
(takes into account the barrier effect on up/downstream migration, 
turbine impact and flow alteration). 

Van Treeck et al 2022 
(EFHI) 

Pollution 

Deep reservoirs present seasonally thermic 
stratification; depending on the local context, the 
downstream section of the river may be impacted 
by cooler or warmer waters 

P1 Warming waters  
(LCIA quantitative analysis adapted to local pressure) Raptis et al, 2017 

P2 Warming combined to water reduction  
(LCIA quantitative analysis adapted to local pressure) Pierrat et al, 2023b 

P3 Seasonal thermic differences (%) (+ or -) 
(adapted to vulnerability of local species) - 

Eutrophication of reservoirs due to anthropic 
activities in watersheds may alter the water quality 
downstream 

P4 (risk of) Deoxygenation of hypolimnion (% O2) and/or 
comparison of water quality (status) downstream to upstream  - 

GHG emissions by reservoirs P5 G-res tool (in addition of LCIA analysis realized in global pressure 
assessment) Prairie et al, 2017. 

Invasive Alien 
Species 

IAS may be introduced through basin transfer or with 
works. They can deeply affect native biodiversity A1 Nb of fish IAS introduced - 

* Lentic species are favoured at the expense of lotic ones. It is considered as a degradation of a natural situation (new lake species can sometimes colonize the up/downstream 
watercourse (degrading its functionality). Therefore, we chose to consider the new aquatic biodiversity not as a positive effect. 
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5.3 Quantification of the global indicators 
The data required for LCIA must be sufficiently detailed and accurate to constitute relevant 
assessments; such data is generally available too late to introduce eco-design levers into the 
project design. 

This is why it is proposed to evaluate, via demonstration sites, if assessments based on ex-ante 
estimates, even simplified or imprecise ones, can be used to identify areas for improvement in a 
project (both new and refurbishment projects) in terms of its overall impact on biodiversity. 

The VSM demonstration site is the one that requires the most work (construction of a cavern and 
an underground circuit for the installation of a pump-turbine at the Saut Mortier dam). It is 
therefore the most suitable for testing the relevance of the proposed simplified global indicators. 

We plan to do: 

 A LCA of the works, based on matter and energy fluxes data coming from the detailed 
preliminary design study compared to the real data during the works (“Planned LCA” vs 
“real LCA”) 

 And in a second step, sensibility analysis to simplify the quantitative assessment as much 
as possible to select the minimal detail data required to correctly assess the impacts 
(“planned LCA” vs “simplified balance”). 

5.3.1 Planned versus real LCA 
This phase will validate if the estimated quantities from the ex-ante measurements correctly 
identify the main pressures on biodiversity (correct prioritization of the contributions of the 
different phases of the project to the impact, for each of the four main pressure categories: Land 
Use, Water consumption, Pollution, Climate Change). 

For instance (see Figure 3), the estimate based on ex-ante data from the VSM project shows that 
the construction of the new pump-turbine cavern is the main contributor to climate change 
pressure (58%, two-thirds of which is due to the cavern), followed by the recalibration of the Ain 
River (24%), preparatory works for the construction site (12%, mainly the development of access 
roads, a bridge and roads) and then general consumption (5%, employee travel) (Bouvier & de 
Becdelievre, 2024 4). 

 

 

 

 

 

 

 
4 As the LCIA has been realized only for “works” steps, and in respect to the Energy and Climate French 
law, and to European recommendations about Environmental footprint methods, the main indicators that 
have been considered are Climate change, Pollution (acidification, freshwaters eutrophization, ozone 
depletion) and Resources Depletion (fossils and minerals resources). This LCIA will be completed for 
Water Consumption and Land Use impacts for the need of ReHydro. 
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Figure 3. Contributions of VSM construction phase to climate, based on matter and energy fluxes 
estimated in the preliminary design study (‘Planned LCA’). Fluxes that are considered are shown 
in Figure 4. (From Bouvier & de Becdelièvre, 2024)) 
 

 

Figure 4. Matter and energy fluxes considered in the LCA assessment, in view of inter-
comparisons depending on the data accuracy (estimated vs real) and method (LCA or simplified 
balance, considering only pertinent hydropower pressures). (From Bouvier & de Becdelièvre, 
2024) 
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As the construction work will be carried out in part after the end of ReHydro, it is planned to 
compare the ‘planned vs. real’ results for the construction phases that will be carried out. This 
analysis will verify that the impact estimates based on the measurement data available at the 
project development stage correctly identify the pressures contributing to the impacts on overall 
biodiversity. 

The conclusions relating to the main contributing pressures will be compared with those of the 
renovation of the Poutès dam 5 on the Allier River in terms of biodiversity. Barillier et al, in prep, 
showed that for this project, the main pressures causing the impact on overall biodiversity were 
due to land occupation and transformation as well as toxicity (climate change and water 
consumption pressures being little affected by the renovation). 

5.3.2 Planned LCA versus Simplified balance 
Depending on the previous results, we will try to simplify the inventory data required for a reliable 
assessment of the impacts hierarchy. For instance, this simplification may concern the accuracy 
of materials or engine types used for the constructive phase, by using standardized verified data 
available at EDF or industry partners. 

The comparative analysis (‘planned’ vs ‘simplified’) will be conducted on VSM database, after the 
validation of the previous analysis (‘planned’ vs ‘real). It will allow to retain relevant simplified 
tools whenever possible, instead of a LCA, which are time and accurate data consuming. 

  

 
5 For information about Poutes dam refurbishment, see https://amber.international/portfolio-item/poutes-
dam-river-allier-france/ 
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5.4 Test of the local indicator matrix 
We propose to test the feasibility and relevance of the indicators on the different demonstrator 
sites or sites proposed by partners. Depending on the refurbishment projects, not all the 
indicators are relevant (Table 6).  

Table 6.  indicators to be tested on site demonstrators  
Pressure N° VSM Rhone Röldal-Suldal Lima (EDP) 

Longitudinal fragmentation  

L1 X X ? X 
L2 X X ? X 
L3 X X ? X 
L4 X X ? - 
L5 X X ? - 
L6 X X ? - 

Lateral fragmentation L7 X X ? - 
L8 X X ? - 

Global Fragmentation L9 X X ? X 

Flow alteration 

F1 X X X X 
F2 X X X X 
F3 X X X X 
F4 X X X - 
F5 X X X X 
F6 X X X - 

Degradation of Riparian zones 

R1 X ? X - 
R2 X ? X - 
R3 X ? X - 
R4 X ? X - 

Degradation of aquatic 
Habitat 

H1 X ? X - 
H2 X ? X - 

Mixed Pressure on Fish H3 X x X X 

Pollution 

P1 X X ? X 
P2 X X ? X 
P3 X X ? X 
P4 X - ? ? 
P5 X X X X 

Invasive Alien Species A1 X - - X 
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6 Conclusions - Perspectives 
The proposed approach aims to ultimately develop a tool for assessing the biodiversity footprint 
of hydropower. It does not replace ecological methods but attempts to integrate the impacts of 
projects across their entire value chain and life cycle. 

This approach is useful both for helping in the choice between different renovation options and 
for assessing whether the impact generated by the renovation work is lower than the ecological 
benefit that this renovation will bring. The difficulty of the exercise lies in the fact that it is 
necessary to base a tool of this type on tools from distinct disciplines: environmental sciences, 
energy sciences, and materials science for global indicators (LCA), and ecology for local impacts. 

As with any model, there is a great deal of uncertainty associated with these assessments. 
Moreover, not all pressure yet benefit from simple impact models. A final challenge lies in the fact 
that the input data must be sufficiently simple to acquire but representative of the impact, as the 
tool is designed to be used in the early steps of a development. 

The indicators proposed here are the result of a literature review and the expertise of the partners, 
who are mainly from the ecological sciences. 

Next steps will be to test and select the most relevant local indicators that will be able to complete 
the global indicators, even with undetailed data. These local indicators have to show their 
capability to discriminate and correctly represent the impacts, based on experts’ advice. 

Their inter-operability with existing indicators (CSRD) will be assessed; to finally build a 
methodological framework able to calculate a biodiversity footprint index (WP5) that will be useful 
to eco-design future hydropower refurbishment projects (WP6). 
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